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Abstract. We use the rotation group and its algebra to provide a novel description of deformations
of special Cosserat rodsor thin rods that have negligible shear. Our treatment was motivated by the
problem of the simulation of catheter navigation in a network of blood vessels, where this description
is directly useful. In this context, we derive the Euler differential equations that characterize
equilibrium configurations of stretch-free thin rods. We apply perturbation methods, used in
time-dependent quantum theory, to the thin rod equations to describe incremental deformations
of partially constrained rods. Further, our formalism leads naturally to a new and efficient finite
element method valid for arbitrary deformations of thin rods with negligible stretch. Associated
computational algorithms are developed and applied to the simulation of catheter motion inside an
artery network.

1. Introduction

Simulation technology is leading to increasingly very fruitful applications in biomedicine. An
important example is the simulation of catheter navigation in a network of blood vessels, where
a physician/user may practice navigation skills, plan a procedure, or design a new device in a
virtual but realistic environment.

A simulation system for this purpose, calledda Vinci (for visual navigation of catheter
insertion) has been constructed at our centre. While the system itself has been discussed
elsewhere [1, 2], this paper describes the underlying physics and formalism which was
developed in this context. Besides providing efficient computational algorithms, the formalism
is interesting in its own right and has useful applications in several other contexts, described
elsewhere.

Special Cosserat rods, described in [3], are rods whose deformations are described by the
following strain variables: flexure (bending), torsion (twist), shear, and dilation (stretch). This
paper considers certain types of special Cosserat rods, calledthin rods, that have negligible
shear and possibly negligible stretch. We present a useful description of deformations in terms
of Lie groups and Lie algebras, and discuss minimal energy or equilibrium configurations
within this framework in the context of constitutively linear elasticity. Related methods for
the determination of equilibrium configurations under constrained conditions are applied to
the simulation of catheter navigation in an arterial network by using a suitable discretization
of the continuum thin rod model.

† Also at: Department of Mathematical Science, National University of Singapore.

0305-4470/99/091709+27$19.50 © 1999 IOP Publishing Ltd 1709



1710 W Lawton et al

2. Comparison with earlier work

The subject of thin rods is an old one, and a classical treatment in terms of curvature and
torsion may be found, for instance, in [5], while a more modern analysis is presented in [3]. A
nice elaboration of the classical discussion may be found in [6]. The classical treatment has
been further applied to rod models of filaments such as DNA molecules, where it leads to a
nonlinear Schr̈odinger equation for equilibrium configurations [7]. These discussions do not
make use of the rotation group and its algebra.

Although a formulation similar to the Lie theoretic description proposed here was
described in [8, 9], where a quaternionic representation of rotations was used to parametrize the
deformations, and, in particular, to develop a computational scheme, we claim several useful
and new developments in this paper.

In particular, we wish to emphasize, besides the application to catheter simulation itself,
the following novelties and useful consequences of our approach (these are primarily a result
of the more complete exploitation of the Lie theoretic features of the formulation):

(1) Our use of the rotation group and its algebra leads to an elegant formulation which lends
itself to a direct analysis. Our description has clear advantages for the particular catheter
problem that we consider, as well as for several other special—but ubiquitous—cases that
we discuss elsewhere.

(2) Our methodology provides a basis for simple and efficient computational algorithms. The
Lie algebraic treatment leads to the development of a consistent hierarchical perturbation
method (section 5) for solving the equilibrium equations derived in section 4 and allows
for fast methods of finding equilibria. These are valid for arbitrary deformations. Since
we can work with higher orders in perturbation theory if necessary, large forces can be
dealt with easily.

(3) This perturbation method leads directly to a new and easily used finite element description
or FEM for the case of rods whose stretch is negligible, where variables can be consistently
updated (section 6). We believe our formulation of finite elements is significantly cleaner
and clearer than the treatments we have encountered. This method can be directly used for
arbitrary deformations, in contrast to conventional FEMs (see [12], for example) which
need special schemes for large deformations.

(4) We present in the appendix an analysis of the decoupling in the elastic energy among
stretch rate, shear and rotation rate for homogeneous rods (often used without proof in the
literature).

In addition to the catheter navigation simulation discussed in this paper, we have applied
this formalism to robotics [18] and to networks orcomplexesof thin rods, such as the modelling
of protein deformations [19] and cytoskeletal cell mechanics.

3. Kinematics: configurations and deformations

Intuitively, a thin rod is an object that admits a class of physical embeddings into space
characterized by two properties: to each embedding there exists a parametrizedcentral curve
that describes the location of its centre; for each pair of embeddings, the correspondence
between material points isapproximated by a deformation that maps normal planes
isometrically onto normal planes. The set of deformations is shown below to form an infinite-
dimensional Lie group that acts transitively on equivalence classes of embeddings called
configurations. Bending and twisting of deformed thin rods are described using the associated
Lie algebra.
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We now define the concept of a framed path orribbonas the analogue of an orthonormal
coordinate system to parametrize material points along the the thin rod. For definiteness, we
will consider here a rod with endpoints. The centreline may be parametrized by its arclength
s as measured from one of the ends of the rod. Everywhere below, we will use a prime to
indicate a derivative with respect to arclength.

We define adirector for a curver to be a unit vectorn(s) (for s ∈ [0, L]) such that

• the derivativen′ is square integrable on [0, L],
• n · r′ = 0 in this interval.

It is clear that for any curve there exists at least one director. Further, the notion of a
director may be easily extended to the case of a rod with corners.

The following concept is basic in differential geometry [14]: aribbon is defined to be a
pair (r,n) wherer is a curve andn is a director forr.

A ribbon (r,n) provides an orthonormal frame(d1,d2,d3), where

d1 := n d3 := r′

|r′| d2 := d3×d1 (1)

over the closed interval [0, L]. These orthonormal frames, and therefore the ribbons that
define them, can be used to parametrize material points sufficiently close to the curver. Our
description of thin rod configurations is equivalent to that of the Cosserat theory of rods [4]
with one director, or equivalently, the special Cosserat theory with one of the directors chosen
to be the unit tangent to the centreline. However, we have not seen elsewhere in this context
the full exploitation of the Lie algebraic concepts developed below.

Based on physical considerations, we shall restrict our family of thin tube deformations to
require that the deformation derivatives map normal planes into normal planes. This model is
a particular case of the special Cosserat theory with one of the directors chosen to lie along the
unit tangent to the centreline. That our restriction is a reasonable one may be seen by examining
the reduction from three-dimensional linear elasticity to one-dimensional rod theories, which
is discussed in the appendix. It is shown there that one can think of rod theories as arising
from an expansion ind/L, whered is the cross sectional size andL is the length of the rod. In
the limit of smalld/L, a description in terms of normal planes alone is seen to be an accurate
one. Accordingly, we proceed with our treatment.

Let SO(3) denote the rotation group on three-dimensional spaceR3. With respect to a
basis forR3, elements ofSO(3) are as usual represented by orthogonal 3× 3 matrices with
unit determinant.

We define a deformationd = (a, α,M) to consist of

• a translation vectora ∈ R3,
• a bounded real functionα, and
• a functionM(s) : [0, L] → SO(3) whose derivative is square-integrable.

LetD denote the set of deformations.
It is straightforward to show that the setD forms an infinite-dimensional Lie group

under the product(a1, α1,M1)(a2, α2,M2) ≡ (a1 + a2, α1 + α2,M1M2) where addition and
multiplication are performed pointwise. Furthermore,D acts as a group of transformations on
the set of ribbons as follows: for a ribbon(r,n), and deformationd = (a, α,M)

d(r)(s) = r(0) + a +
∫ s

0
eα(τ)M(τ)r′(τ ) dτ (2)

and

d(n)(s) = M(s)n(s). (3)
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It is clear that for smallα(s), this function can be given the interpretation of a local stretch
rate along the rod. The rotation matrixM(s) rotates the local frame defining the tangent and
the normal plane to a corresponding new frame in the deformed rod; it is the assumption that
normal planes are deformed to normal planes that allows us to parametrize the deformations
in this manner. Further, it is easy to see that deformations preserve corner angles, if any.

3.1. Rotation rate, bending and twisting

This section defines the rotation rate of a deformation and shows it is a path in the Lie algebra
of the rotation group. Then, we define bending and twisting of a deformation acting on a
configuration as the normal and tangential components of the rotation rate with respect to the
configuration curve.

We note that if a rotationM(s) is differentiable ats, M ′(s) lies in the tangent space to
SO(3) atM(s). The Lie algebraA [10] of SO(3) is the tangent space toSO(3) at the identity
I ; therefore the quantity�M(s) ≡ (M(s))−1M ′(s) = MT (s)M ′(s) takes the tangent space to
SO(3) atM(s) to the tangent space toSO(3) atI . Consequently�M(s) lies in the Lie algebra
of SO(3) and is a skew-symmetric matrix.

We shall call�M(s) the rotation rateassociated with the pathM(s). Clearly ifM ′(s)
is square-integrable (in the interval [0, L]), so is�M(s). Further, given a square-integrable
skew-symmetric matrix�(s), a unique rotationM(s) is determined fromM(0) and�(s) by
integrating the differential equationM ′ = M�.

Notation. We call attention to the following notation that we shall use throughout this paper:
for any vector denoted by a lower case boldface letter (ω ≡ [ω1, ω2, ω3]T ∈ R3), let the
corresponding upper case letter denote the skew-symmetric matrix

� =
[ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

]
(4)

and conversely.

Note that for anyv ∈ R3 and� ∈ A, �v = ω × v. It is also useful to note that for any
N ∈ SO(3) and� ∈ A, P ≡ N�NT ∈ A andp = Nω. These relations are often invoked
later without comment to pass between cross products and matrix similarity transformations.

We also note that given a rotationM through an angleθ about the unit vectorn, the matrix
M may be obtained by exponentiating the matrix(θN); this operation has the expansion

M = exp(θN) = I + sinθ + (1− cosθ)N2. (5)

We shall now define twisting and bending associated with a thin rod deformation. Let
d = (a, α,M) ∈ D andr ∈ C. The twisting (bending) ofd relative tor is defined to be
the tangential (normal) component ofω with respect to the curver, where�(s) is the rotation
rate associated withM(s). Two examples follow.

Example 1 (helix). Let p ∈ C be defined byp(s) = su whereu is a unit vector and let
d = (0, 1,M) ∈ D be a deformation such thatM(0) = I andMTM ′ is a constant� ∈ A.
ThenM(s) = e�s is a rotation byγ s about the vectorωwhereγ = |ω|. Writeu = β1u1+β2u2

(whereβ2
1 + β2

2 = 1) such thatu1 is the unit vector parallel toω andu2 is normal toω and
β2 > 0. Thend(p) = q where

q(s) = sβ1u1 +
β2

γ
M

(
s − π

2γ

)
u2
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so thatq forms a helix having axisu1 and lying on a cylinder having radiusβ2

γ
and slopeβ1

β2
.

The curvatureκ = β2γ and the torsionτ = β1γ . The twisting ofM with respect top equals
τ (can be positive or negative) and the bending magnitude equalsκ.

Example 2 (horseshoe).Define the curvep(s) = [coss, sins, 0]T , with unit tangent vector
u(s) = [− sins, coss, 0]T over the interval[0, π ] and defineM(s) = eU(s). ThenM(s)
rotates the curvep in place and has the effect of bending it at a rate equal to two around the
unit vector[0, 0, 1] = u′ × u followed by a rigid rotation byπ about the axis[1, 0, 0].

4. Equilibrium configurations

This section introduces energy functions and discusses equilibrium configurations, within
the context of the kinematical description of deformations discussed so far. The problem of
determining physical equilibria under the action of external forces is formulated as a boundary
value problem. Although equations equivalent to our final equations (31) and (32) have been
known, they have not been presented in the form we have introduced using rotation operators.

4.1. Energy function

Let (r,n) be a reference configuration. Given a deformationd(r,n), we are interested in
energy functions that can be expressed as

E(d) = Eex(d(r)) +Eel(d)

whereEex is anexternal energy functionthat depends only on the configuration curve and
Eel(d) is anelastic energy functionthat depends only on the shape (i.e. equivalence up to rigid
motion) of the configuration (i.e. uniquely specified by the stretching factorα and the rotation
rateω of the deformation).

The rotation rateω and the stretch rateα are thestrain variables associated with the
deformation of the rod.

We express the energy functions as integrals of non-negative energy density functions,

Eex(d(r)) =
∫ L

0
Jex(d(r(s)), s)ds (6)

and

Eel(α,ω) =
∫ L

0
Jel(α(s),ω(s), s)ds. (7)

As stated earlier, this form of the elastic energy corresponds to a particular kind of special
Cosserat rod [4]; it is assumed here that cross sections of the rod do not change their shape, so
that the single director vectorn suffices to characterize the twisting of cross sections as one
proceeds along the rod. Rotational and translational invariance dictates that the elastic energy
density must depend only on the vector functionω and on the functionα which measures
longitudinal stretching.

Choose a basis at positions on the reference curve whose first element is the unit tangent
vector, whose second component equals the director, and whose third component equals their
cross product and letz(s) represent the size-four column vector [α(s),ω(s)]T with respect to
this basis. Then the quadratic Taylor approximation for the elastic energy density yields (up
to addition of a constant function ofs)

Jel(α(s),ω(s), s) ≈ 1
2(z(s)− z0(s))

TQ4(s)(z(s)− z0(s))
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Q4(s) is a positive definite 4× 4 matrix, andz0(s) ≡ [α0(s),ω0(s)]T is determined byQ4(s)

and the linear term in the Taylor expansion.
Retaining only the above form of the Taylor expansion corresponds to a linearly elastic

model. Then the configurationz = z0 provides the unique (shape equivalence class)
configuration of zero elastic energy.

Throughout the remainder of this paper we will assume linear elasticity and that the
reference configuration has zero elastic energy (i.e.z0(s) = 0: such a configuration can be
observed by placing the rod in a slightly viscous liquid having the same density as the rod
material and allowing the rod to assume a stationary state).

We further assume that both the cross sectional geometry and the elastic properties of the
rod vary slowly with changes ins that are comparable with the diameter of the rod. NowJel is
a quadratic function; then for such rods, it is shown in the appendix that there are no bilinear
couplings betweenα andω. Thus to quadratic order, the elastic energy density takes the form

Jel(α,ω, s) = aα2 + 1
2ω

TQω (8)

wherea > 0 andQ is a 3× 3 positive definitestiffness densitymatrix. We also show there
that the rotation rate has no coupling to shear variables.

We note here that this form of the elastic energy density is quite general. The further
inclusion of appropriate constraints to restrict the degrees of freedom permits the use of this
model in describing deformations of protein backbones, where there are constraints onω. This
is best done with the use of a compliance-based formalism discussed in [16].

For rods with rotationally invariant cross sections, the stiffness density, for alls, must
further satisfy

OTQ(s)O = Q(s)
for every 3× 3 matrixO made up of 1 in the upper left entry and a 2× 2 rotation matrix
in the lower 2× 2 block, in a frame with one axis along the unit tangent to the reference
curve. This impliesQ is a diagonal matrix whose last two entries are equal. In this case, the
coefficients in the elastic energy density for arbitrary thin rod deformations and for arbitrary
reference curves (in the case of linear elasticity) follow directly from considering the simple
case of small deformations of a straight rod [11]; the energy density is

Jel(α, ω, s) = EYA

2
α2 +

GSI

2
|ωt |2 +

EY I

2
|ωb|2. (9)

Here |ωt | and |ωb| denote the magnitude of the twisting and bending components ofω
with respect to the reference configuration (assumed to be an elastic energy minimum); the
corresponding twist and bend vectors respectively areωt ≡ (ω ·u)u andωb ≡ ω− (ω ·u)u.
HereEY is Young’s modulus,GS is twice the shear modulus,A is the cross sectional area, and
I is the second moment of area. Note thatα,ω, A, I and the elasticity coefficientsEY ,GS are
in general functions ofs ∈ [0, L]. For a thin rod with annular cross section with inner and outer
radiiR1 andR2 respectively (circular forR1 = 0),A = π(R2

2 −R2
1) andI ≡ π(R4

2 −R4
1)/4.

The quadratic form of the elastic energy of straightbeam elementswhich are standard in
finite element treatments of thin rod deformations (see, for instance, p 298 in [12]) follows
directly from the above elastic energy density for rods with rotationally invariant cross sections.
The elements in this description have six degrees of freedom (three positional and three
orientational) at each beam endpoint (or node); the 12×12stiffness matrixwhich describes the
energy of a deformed beam element in terms of nodal degrees of freedom is obtained directly
by integrating the energy density (9) of a straight rod with a cubic displacement function. We
note also that the stiffness of arbitrarycurvedbeam elements may be obtained by integrating
the perturbation equations (41) developed later in section 5.
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In the case when stretch is negligible, one can derive a simplified finite element description
with only three degrees of freedom per element (see section 6 below), corresponding to bending
and twisting of the element. This may be obtained from the elastic energy density (9) above,
or alternatively from the perturbation equations to be derived below.

The following section formulates the determination of equilibrium configurations under
specified constraints as a variational problem.

4.2. Thin rod differential equations

Modelling the passage of a thin flexible catheter through a network of tubes with curved walls
in a computationally efficient manner is a non-trivial problem. With the important simplifying
assumption that the motion is damped sufficiently fast that the catheter may be taken to be
instantaneously in equilibrium with the artery walls, the problem may be cast in the form of a
quasistatic incremental energy minimization problem.

We shall consider here the problem of determining minimal total energy configurations,
which describe deformations of elastic thin rods under external forces and constraints. These
are characterized using variational principles to derive differential equations that describe the
equilibrium configuration. Further, based on our formalism, efficient techniques to solve for
equilibria are presented in subsequent sections.

In order to find minimum energy configurations, we need to minimize the total energy
functional, subject to the constraint that the thin rod configuration is a valid deformation of
the reference (undeformed) configuration. We shall define an augmented energy functional in
order to do this.

We will assume that stretching of the thin rod is negligible, as is indeed the case for real
catheters, for instance, during normal use; this means thatα(s) = 0, to a good approximation.

We will denote byJex(r(s), s) the corresponding potential energy density due to the
interaction of the thin rod with external agents; in the case of a catheter moving inside an
arterial wall, the wall may be modelled by means of a steeply rising potential function. Here
r(s) is the (deformed) spatial location of a point labelled by lengths along the rod; we shall
user0(s) to denote the undeformed or reference configuration of the catheter.

The total energy of the rod–external agent system is then given by

Etot (r,ω) =
∫ L

0
ds [Jel(ω(s), s) + Jex(r(s), s)]. (10)

Let us denote byu0(s) the unit tangent vector along the thin rod in its reference or undeformed
state.

Since we have assumed that stretching is negligible, deformations of this reference state
that we shall consider are then elements ofD of the form(a, 0,M(s)), so that the position
vector of a point at lengths along the thin rod is given from (2) as

r(s) = r0(0) + a +
∫ s

0
M(t)u0(t) dt. (11)

Notice thatr(0)− r0(0) = a. This relationship may be rewritten in differential form as

r′(s) = M(s)u0(s) (12)

where the prime indicates differentiation with respect tos.
Recall also that the change of the rotation matrixM along the rod is

M ′(s) = M(s)�M(s) (13)

where�M(s) is the instantaneous rotation rate ofM(s). Associated with the skew-symmetric
matrix�M is the vectorωM , as discussed earlier.
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When a thin rod interacts with external forces, the configuration it assumes is one which
minimizesEtot , subject to the above relations, which may be viewed as constraints, forr′

andM ′. The resulting equilibrium configuration of the thin rod is therefore one which is a
stationary state for the followingaugmentedenergy functional:

H =
∫ L

0
ds (Jel(ω, s) + Jex(r, s) + λ · (r′ −Mu0)− µ · (ω − ωM)). (14)

We have introduced here the vectorsλ(s) andµ(s) which are Lagrange multiplier auxiliary
variables which serve to enforce the relations (12) and (13). The dots between vectors indicate
scalar products.

The problem of finding the equilibrium configuration of the thin rod is now recast as a
constrained optimization problem.

One may choose to simply build the constraints (12) and (13) into the geometry and find
equilibrium configurations numerically by a descent onEtot . This was the strategy used in an
application described in [17]. Alternatively, we may also derive the Euler–Lagrange equations
to find a stationary point of the augmented energyH , as we now do; these equations will make
the connection between applied forces and deformations.

The variation inH due to a variation inω yields

µ− ∂Jel
∂ω
= 0 (15)

as the strong equation for stationarity. The variational equations due to variations inλ andµ
yield the relations

r′ = Mu0 (16)

and

M ′ = M� (17)

as required. The associated boundary conditionsr(0) andM(0) are assumed known.
A variation inr holdingr(0) fixed yields the variational equation

λ′ = ∂Jex

∂r
(18)

and the boundary conditionλ(L) = 0.
Next, consider a variation inM. Since we want to preserve the nature ofM as a

rotation matrix, variations inM are restricted to be of the formδM = MδA, whereδA is
an antisymmetric matrix (this restriction follows from the fact thatMTM = I ).

The variation inH due to a variation inM is then

δH = −
∫ L

0
ds [λ · (MδAu0)− µ · (g + δa′)] (19)

with

G ≡ MTM ′δA− δAMTM ′

= �δA− δA�. (20)

This may be rewritten in the form

δH =
∫ L

0
ds[δa · ((MTλ× u0) +µ× ω) +µ · δa′]. (21)

Integrating the last term inδH above by parts then yields the variational equation

µ′ = µ× ω + (MTλ× u0) (22)
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together with the boundary conditionµ(L) = 0.
It is possible to rewrite this equation in a more elegant form by defining a new variable

ξ(s) = M(s)µ(s). Using the above equation for the rate of change ofµ, it is easy to see that
the rate of change ofξ along the thin rod is given by

ξ′ = λ× (Mu0) = λ× r′. (23)

The auxiliary variablesλ andξ have a direct physical interpretation. Consider first the
relation

λ′ = ∂Jex

∂r
. (24)

The right side here is the gradient of the external potential energy density along the rod; this
is therefore the negative of the external force per unit length,f(s), along the rod. Integrating
this expression along the entire length of the rod gives

λ(L)− λ(0) = −
∫ L

0
ds f(s) (25)

or, using the boundary conditionλ(L) = 0,

λ(0) = Ftot (26)

which is the total external force acting along the length of the thin rod. It is apparent thatλ(s)

may also be interpreted as theinternal force on the cross section at points due to internal
stress. If the external forces areconcentratedforces acting only at discrete points, thenλ(s)
must be constant along sections of the rod between such points.

Integrating the equation forξ′, (27), along the length of the rod and using the boundary
conditionsλ(L) = 0 andξ(L) = 0 gives

ξ(0) = λ(0)× r(0)−
∫ L

0
ds [f(s)× r(s)]

=
∫ L

0
ds (r(s)− r(0))× f(s) (27)

which is the total torqueτ tot due to external forces about the initial pointr(0) of the rod;
thereforeξ(0) = τ tot . It is clear thatξ(s) has the interpretation of being theinternal moment
acting on the cross section at points. If external moments are applied only at discrete points
and there are no applied external forces, thenξ must be constant along sections of the rod
between such points.

We shall collect below the system of equations we have derived so far, whose solution
yields the equilibrium configuration of the thin rod as a function of the initial point position
and orientationr(0) andM(0) respectively:

r′ = Mu0

M ′ = M�
λ′ = ∂Jex

∂r
ξ′ = λ× r′
ξ = Mµ
µ = ∂Jel

∂ω
.

(28)

If, in addition to forces, there are torques acting along the length of the rod, the fourth
equation above has the corresponding torque density appearing on the right side as an additional
term:

ξ′ = λ× r′ + τ ′ (29)
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SinceJel is quadratic inω, we can write the equation forξ in the form

ξ = MQω (30)

whereQ is the symmetric matrix of coefficients in theω-dependent part of the quadratic form
Jel ; it is the stiffness density of the rod.

To recapitulate,r is the position vector along the thin rod;u0 is the unit tangent vector
along theundeformedrod;M is the rotation matrix which specifies the deformation from the
reference configuration;ω is the rotation rate vector;λ is the internal force on the cross section
along the rod, andξ is the internal moment along its length.

Let us rewrite the above equations in a form which makes the coupled nature of the
equations more transparent. Using the relationξ = MQω, we have

r′ = Mu0

M ′ = M�
λ′ = ∂Jex

∂r
(Qω)′ = [(MTλ)× u0 − ω ×Qω].

(31)

These four differential equations above along with boundary conditions serve to determine
the four unknownsr,M, λ andω upon integration. Notice that knowledge ofM(s) along the
paths suffices to determine the other variables by integration; however, ifM(s) is unknown,
these coupled nonlinear equations must be integrated simultaneously.

We note that these equilibrium equations reduce, in the case of rods whose reference
configuration is straight, to those given, for instance, in [11].

The last equation in (31) is formally the same as the Euler equation of motion which
describes a rotating body; this is the celebrated Kirchoff spinning top analogy (see, for instance,
[5]). In this analogy,Q plays the role of the moment of inertia tensor,ω plays the role of the
angular velocity, and the arclength parameters plays the role of time; the first term on the right
side of the last equation in (31) plays the role of a time-dependent torque. This analogy can
also be seen to arise from the form of the elastic energy functional (8) with zero stretching,
which corresponds to the kinetic energy of a body with moment of inertiaQ rotating with
instantaneous angular velocityω. The difference is that while the Euler equation describes the
evolution of the configuration in time as an initial value problem, the equilibrium equations for
thin rods describe a two-point boundary value problem. The use of a Lie-theoretic description
makes the analogy very explicit.

A comparison with a modern treatment such as that in [3] shows that the general and
special theories of Cosserat rods discussed there, when specialized to the case of very thin
rods, reduce naturally to the rotation group-based theory we have described, as discussed in
the appendix.

When there is a free end ats = L, the variablesλ andξ satisfy the endpoint conditions
λ(L) = 0 andξ(L) = 0; we therefore have a two-point boundary value problem to solve, with
initial conditions forr andM, and final conditions forλ andξ. In general, shooting methods
[13] are needed to solve this boundary value problem.

We note here that when the deformed shape is specified, and the problem is one of
computing the corresponding forces, the endpoint conditionsλ(L) = 0 = ξ(L) must be
relaxed, since the shape of the deformed curve is known. Then the total external force along
the length is given by

Ftot = λ(0)− λ(L)
and the force acting on the point of support isλ(0). Similarly, as we saw earlier, the moment
acting on the support isξ(0).
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For the case of a thin rod acted on by forces as well as torques, the last equation in (31)
above is modified to read

ω′ = Q−1[(MTλ)× u0 − ω ×Qω −Q′ω +MT τ ′]. (32)

5. Perturbation theory

Here we develop a perturbative method for finding equilibrium configurations of a thin rod
by an incremental process corresponding to incremental loading. The method has a close
analogy with perturbation methods used in time-dependent quantum mechanics. It effectively
replaces a nonlinear differential equation by a hierarchy of linear differential equations; the
corresponding two-point boundary value problem at each order of perturbation theory is easily
solved by a linear shooting method. A similar perturbation theory is also developed for the
compliance form of the thin rod equations.

As stated earlier, the arclength parameters plays the role of time. Taking this analogy a
step further, the rotation matrixM(s)may be thought of as playing the role of the time evolution
operator in quantum mechanics; developing perturbative versions of the thin rod equations is
then analogous to doing time-dependent perturbation theory in quantum mechanics, with the
incremental forces playing the role of the perturbing Hamiltonian in quantum mechanics.

We shall consider the general case where the rod is acted on by both forces and torques.
Suppose we have found a solution for given force and torque densitiesλ′0 andτ ′0 respectively;
denote the corresponding rotation matrix and rotation rate byM0 and�0 respectively. Let us
now apply additional incremental force and torque densitiesελ′1 andετ ′1 respectively. Here
ε is a small parameter which reflects the incremental nature of the applied forces and torques.
Alternatively, we may regard it as purely a book-keeping device and set it equal to unity later,
with the understanding that the applied forces and torquesλ′1 andτ ′1 are indeed incremental.
Let the new configuration have rotation matrixM, with

M = NM0. (33)

ThereforeN corresponds to a further deformation about the current configuration.
Since there has been only an incremental change in configuration,N can be represented

in exponential form as

N(s) = exp(εT1(s) + ε2T2(s) + · · ·). (34)

This may be expanded order by order inε:

N = I + εT1 + ε2

(
T2 +

T 2
1

2

)
+ · · · . (35)

The rotation rate of the new matrixM is

MTM ′ = MT
0 N

T (N ′M0 +NM0) = �0 +MT
0 �NM0 (36)

where�N = NTN ′ is the rotation rate corresponding to the rotation matrixN . Expanding
�N as a series inε

�N = ε�1 + ε2�2 + · · · (37)

and substituting in�N = NTN ′ gives the sequence of relations

�1 = T ′1
�2 = T ′2 + 1

2(T
′
1T1− T1T

′
1)

(38)

and so on, order by order inε.
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Equation (36) above gives the new rotation rate vector as

ω = ω0 +MT
0 (εω1 + ε2ω2 + · · ·) (39)

with ω1 andω2 given by

ω1 = t′1
ω2 = t′2 + 1

2t
′
1× t1

(40)

respectively.
We may use these expansions in the thin rod equations to obtain a sequence oflinear

differential equations forT1,T2 and so on, order by order in the perturbationε. The incremental
method therefore replaces a set of nonlinear differential equations by a hierarchy of linear
differential equations that may be solved to desired accuracy at each incremental step. We
shall give here the corresponding equations to first and second order in perturbation theory.
Perturbing equation (29) to first order inε yields the system of first-order differential equations(
M0QM

T
0 ω1

t1

)′
=
(
40 4′0 −30M0U0M

T
0

I 0

)(
ω1

t1

)
+

(−M0U0M
T
0 I

0 0

)(
λ1

τ ′1

)
(41)

whereI is the 3×3 identity matrix and40 is the skew-symmetric matrix corresponding toξ0,
etc. This system may be written in several equivalent forms. It must of course be supplemented
by appropriate boundary conditions. If the orientation at one end (say ats = 0) is fixed and
the (change in) torque at the other end is specified, then the boundary conditions are

t1(0) = 0
f(L) ≡ [t1× ξ0 +M0QM

T
0 ω1]s=L = τ 1(L)

(42)

whereτ 1(L) is the specified change in applied torque ats = L.
It is apparent here that only therotatedstiffness densityM0QM

T
0 (i.e. of the deformed

configuration as seen in a fixed external reference frame) and therotatedunit tangentM0u0

(whose matrix representation isM0U0M
T
0 ) enter these equations; this is as it should be since

the variablet1 defines an incremental rotation measured in the fixed frame.
Since equation (41) is linear in the variablesω1 and t1, it may be solved by a linear

shooting method for the specified final point condition. This involves making a guess for
ω1(0), solving the differential equation, measuring the deviation from the desired final point
condition, and correcting the guess accordingly. This correction requires knowledge of the
3×3 matrix expressing the linear relationship between the final point valuef(L) and the initial
valueω1(0), whose three columns may be found numerically by integrating the equation for
three orthogonal unit vector choices ofω1(0).

For completeness, we give the form of the equation one gets at the next order in perturbation
theory. This is clearly a relation fort2; we get the first-order differential equation system(

M0QM
T
0 ω2

t2

)′
=
(
40 4′0 −30M0U0M

T
0

I 0

)(
ω2

t2

)
+

(
b

− 1
2T
′
1t1

)
(43)

where we have defined the quantityb as

b ≡ (31T1 + 1
230T

2
1 ) + 1

2(T14
′
0t1 + (40T

′
1 − T ′140)t1 + T140t

′
1). (44)

Given that we have already solved fort1 at the previous order of perturbation theory, this
is again a linear system of equations. The boundary conditions at this order are

t2(0) = 0 (45)

and

[t2 × ξ0 + 1
2t1× (t1× ξ0) + t1×M0QM

T
0 t
′
1 +M0QM

T
0 ω2] = 0. (46)
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To summarize, the perturbation method replaces a set of highly nonlinear differential
equations corresponding to a two-point boundary value problem with a hierarchy of linear
differential equations, each of which is easily solved, at every incremental step in the
deformation. At each deformation step, it is clear that more accurate solutions may be obtained
by working at higher orders in the perturbing forces, and the process has a close analogy with
the time-dependent perturbation theory often employed in quantum mechanical problems.

6. Stretch-free finite elements

In this section we describe a new finite element discretization for stretch-free rods that provides
an effective method of computing equilibrium configurations.

Consider a rod with arbitrary reference curve, with homogeneous material properties and
circularly symmetric cross section, discretized into a sequence of elements straight in their
reference states. The elementstiffnessmatrix which describes the linear response of each
element to applied incremental forces and torques,Kel,i in equation (60) below, as well as the
equation for equilibrium (66) (for a single element) may be obtained directly by integration
of the differential equation (41) assuming a constant rotation rate along the element. In the
following, we will make the derivation of an incremental equilibrium equation of the discretized
rod more explicit by directly expanding the elastic energy of the rod.

Let its Young’s modulus and rigidity modulus beE andG respectively; letI be the second
moment of area of the cross section and letJ = 2I . For the case of zero stretch, the elastic
energy density of the rod (9) may be written in terms of the rotation rateω as

Jel = EI

2
|ωb|2 +

GJ

2
|ωt |2 (47)

whereωt ≡ (ω ·u)u andωb ≡ ω−ωt are the twisting and bending components respectively
of the rotation rate.

The deformation of the rod may be expressed in terms of only the new orientations at
the nodal points; the degrees of freedom for incremental deformations are nodal orientational
changes in this case.

Thus, let element(i, i + 1) be aligned with thex-axis in the reference state and lets be the
arclength parameter along this element. The pulled-back deformed element has an orientation
N(s) (for 06 s 6 Li whereLi is the length of the element) relative to that at nodei; for small
strain(ω) we can writeN(s) ≈ I + θ̃ (s) whereθ̃ (s) is skew-symmetric. Clearly we can write
(see figure 1)

θ̃ (Li) = MT
i Mi+1− I. (48)

For each such element, the vectorθ(s) corresponding tõθ may be expanded as a linear
function of the arclength along the element:

θ(s) = bs (49)

where there is no constant term sinceθ(0) = 0. Since the rotation rate along the element is,
to leading order, given byω = dθ/ds = b, this approximation of linearθ(s) corresponds to
constant rotation rate deformations for the elements.

If we write θ(Li) ≡ θi = (θ1, θ2, θ3), then we haveb = θi/Li . We shall refer toθi as
the strain associated with the element(i, i + 1).

Since the strain is small, derivatives of displacements of the element in they and z
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Figure 1. A pulled-back deformation showing the relative orientation between endpoints of the
pulled-back deformed element.

directions are well approximated by

dy

ds
= θz(s)

dz

ds
= −θy(s)

(50)

where the minus sign in the second equation accounts for the sense of rotation. These equations
may be integrated to give(

y(L)

z(L)

)
= L

2

(
θ3

−θ2

)
. (51)

Analogously, for an element aligned with a unit vectorui in its reference state, the pulled-
back transverse displacement is

y⊥ = Li

2
θi × ui

= Li

2
(MT

i Mi+1− I )ui . (52)

There is no longitudinal displacement to leading order since there is no stretching. The
pulled-forward transverse displacement is

y⊥,f = Li

2
Mi(M

T
i Mi+1− I )ui

= Li

2
(Mi+1−Mi)ui . (53)

In the deformed state, each element(i, i +1) is rigidly rotated byMi and bent and twisted;
thus the position of node(i + 1) is related to that of nodei by

xi+1 = xi +LiMiui + y⊥,f

= xi +
Li

2
(Mi +Mi+1)ui . (54)

Writing b ≡ (b1, b2, b3), it is easy to see that the twisting component of the rotation rate
is given byb1 = θ1/Li , while b2 = θ2/Li andb3 = θ3/Li make up the bending component.
From equation (47), it follows by integration over the element arclength that the elastic energy
of the element is

Eel,i = 1
2θ

T
i Kele,iθi (55)
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with the 3× 3 stiffness matrix

Kele,i =
(
GJ/Li 0 0

0 EI/Li 0
0 0 EI/Li

)
. (56)

When the element in its reference state is not aligned with thex-axis, the above stiffness
matrixKele,i must be conjugated by a rotation matrix which rotates the globalx-axis to the
direction defined by the reference element.

Note that the strainsθi are usually small even when the deformation of the rod is large.
We may find equilibrium configurations incrementally by relating changes in the strainsθi
to changes in the nodal degrees of freedom (nodal orientations). A small change in current
orientation at nodei may be written asδMi = δ8iMi whereδ8i is a skew-symmetric matrix.
From the definition (48), it then follows to leading order in incremental quantities that

δθi = MT
i (δφi+1− δφi ). (57)

The incremental change in the elastic energy of the element is

δEel,i = 1
2δθ

T
i Kele,iδθi + θTi Kele,iδθi . (58)

To quadratic order, using (57) and the assumption of small strain, we may write the
incremental elastic energy in terms of the global incremental orientational degrees of freedom
δφi andδφi+1:

δEel,i = 1

2
[δφiδφi+1]Kel,i

[
δφi
δφi+1

]
− LTel,i

[
δφi
δφi+1

]
(59)

with

Kel,i = HT
i Kele,iHi (60)

and

Lel,i = −HT
i Kele,iθi (61)

where we have defined the 3× 6 matrixHi ≡ [−MT
i M

T
i ].

The 6× 6 matrixKel,i and the 6× 1 vectorLel,i are the stiffness matrix and load vector
respectively associated with the element(i, i + 1). The total elastic stiffness matrix and load
vector for the rod’s entire set of degrees of freedom (orientation changes at each node) may be
assembled from these elemental quantities by adding for each node the corresponding stiffness
and load contributions respectively from all the edges (elements) connected to that node.

It is worth noting that the element stiffness matrixKel,i and the equation for equilibrium
(66) may also be obtained directly by integration of the differential equation (41).

External torques applied at the nodes contribute a termτT [δφ] to the incremental total
energy where [δφ] is the concatenated vector of incremental orientational degrees of freedom
for all the nodes andτ is the vector of applied external torques at all the nodes.

In the incremental total energy, externalforcesat the nodes couple to the incremental
nodal positions; nodal positions depend on all the orientations up to that node, as in equation
(54). The incremental version of this equation may be written in the form

δx1

δx2

·
·

δxN

 =

δx1

δx1

·
·
δx1

 + T


δφ1

δφ2

·
·

δφN

 (62)
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whereT is the lower triangular matrix given by

T =


0 0 · · · 0
P1 R1 0 · · 0
P1 P2 R2 0 · 0
· · · · · ·
· · · · · ·
P1 P2 · · PN−1 RN−1

 . (63)

Here we have defined

Pi ≡ − 1
2(Li−1Vi−1 +LiVi)

Ri ≡ −LiVi
2

(64)

whereVi is the skew-symmetric matrix corresponding to the unit vectorvi = Miui .
Then ifFex is the vector of applied external forces at all the nodes, the incremental energy

due to external forces and torques at the nodes,Fex andτ respectively, is

δEex = −FTex [δx1] − (F TexT + τT )[δφ] (65)

where [δx1] is the first term in (62).
When loads at the nodes are specified directly (usually with the first node held fixed,

δx1 = 0), incremental equilibria may be obtained from minimizing the quadratic expansion
of the total incremental energy(δEel + δEex); this yields the system

Kel [δφ] = (Lex +Lel) (66)

whereLex = (T T Fex + τ); note that the total load on the right side is an incremental quantity
sinceFex andτ are applied incrementally.

Catheters are generally made of polyurethane with a typical Young’s modulus value of
about 6× 106 N m−2 and a Poisson’s ratio of about 0.45. Typical inner and outer diameters
are 1 mm and 2.5 mm, respectively. Figure 2 compares results for a loading experiment (a
downward force applied at one end with the other end fixed) using the three degree of freedom
(d.o.f.) finite element method (FEM) described here with a more precise six d.o.f. FEM which
allows for stretch (discussed in [16]). In both cases, 20 elements were used. It can be seen
that the agreement between the two methods is excellent, although the three d.o.f. method uses
only half the number of degrees of freedom.

Figure 3 shows the large deformation result of applying a force and torque in steps at one
end, with position and orientation fixed at the other end (clamped boundary conditions).

When there is a position-dependent external potential field interacting with the rod,
associated with it is an external stiffness matrix and an external load vector (arising from
the quadratic and linear parts respectively of the Taylor expansion of the incremental external
energy); then the total stiffness matrix(Kel + T TKexT ) must be used on the left side of (66).

7. Simulating catheter navigation

An important biomedical application is the realistic simulation of catheter motion within a
network of blood vessels. Assuming that the vessel wall is quite rigid, the constraint that the
catheter is contained within the vessel walls may be represented by a steeply rising potential
function. Given the severe damping present in the system, the process of insertion may be
treated to good approximation as an adiabatic or quasistatic one, so that at every instant the
catheter assumes a shape which minimizes the sum of the elastic deformation energy and the
wall potential energy. Using the finite element discretization described in the previous section,
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Figure 2. A loading experiment with a catheter which compares results from the three d.o.f. FEM
used here (full curves) with a six d.o.f. FEM which allows for stretch (broken curves). A downward
force was applied; length units are in cm.

equilibrium catheter configurations may be computed incrementally as the catheter is pushed
in, withdrawn, or twisted at the entry point; these are the degrees of freedom actually accessible
to the physician performing the procedure.

The total elastic energyEel is obtained by integrating the elastic energy density, which as
discussed earlier is a quadratic function of the rotation rate (strain)ω. The external energyEex,
that enforces the arterial wall constraint, is obtained by integrating the wall potentialPex ; this
potential is zero inside the inner artery wall and increases quadratically with distance from this
wall outside. At every (small) insertion step, the total energy may be expanded to quadratic
order in the configuration variables, so that we have a quadratic minimization to perform at
every step, as discussed in section 6.

7.1. Wall potential

We characterize the artery by a central curve (parametrized byt), assume that the artery has
a circular cross section with slowly varying cross sectional radiusr, and that the catheter has
a circular cross section of radiusR. The catheter is outside the vessel wall when the signed
distanced(p) from a pointp on the catheter to the artery wall,

d(p) = |p− q| +R − r (67)

is positive, whereq is the closest point top on the central curve of the artery, andr is the
arterial radius atq. It is clear thatd is positive if and only if the catheter penetrates the arterial
wall.
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Figure 3. A loading experiment with a catheter which results in a large deformation; a force and
torque were applied at the free end and the three d.o.f. FEM was used. Length units are in cm.

The wall potential functionPex increases quadratically with the catheter’s distance from
the surface of the arterial tube. The potential function is thus defined by

Pex(p) := a

2
d2 (68)

for d > 0, andP = 0 for d 6 0. The gradient and Hessian (matrix of second derivatives) of
the wall potential function with respect to the catheter’s position variablesp are respectively

5Pex(p) ≡ ad(p) p− q|p− q| if d > 0, else ≡ 0 (69)

and

HessianPex(p) ≡ a d(p)

|p− q|I − a
(R − r)(p− q)(p− q)T

|p− q|3 (70)

whereI is the 3×3 identity matrix and(p−q)T denotes the row vector obtained by transposing
the column vector(p− q).

We have included here the explicit expressions for the gradient (negative force density) and
Hessian of the wall potential since these quantities are needed in the determination of equilibria
by minimizing the quadratic expansion of the incremental energy. These are the coefficients
of the linear and quadratic terms in the Taylor expansion of the incremental external energy
density.

The gradient and Hessian of the wall potential in (69) and (70) above may be integrated
to get the total externalload andstiffnessassociated with an element in terms of its endpoint
positional degrees of freedom. As for the elastic load and stiffness in the previous section,
these may be assembled into a total external stiffness matrixKex and load vectorLex .
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We have in effect reduced the computation of theforce density at each pointp on the
central curve of the catheter to the problem of computing the nearest pointq on the central
curve of the artery. For this, we need a geometric model for the central curve of the artery and
its wall. The inner arterial wall is accordingly represented by a tubular surface, acylindrical
swept surfacehaving the parametrized form

Wcyl(c, r) := {c(t) + r(t) cos(θ)v(t) + r(t) sin(θ)w(t) : t ∈ [0, 1], θ ∈ [0, 2π ]} (71)

wherec(t) is a continuously differentiable function on the arterial central curve. We assume
that the artery radiusr(t) is less than the radius of curvature of the central curve at each point;
v andw are unit vectors that are normal to the curve and to each other (they span the cross
section).

Leth(t) denote the unit tangent to the curve atc(t) and define theorthogonal planeP(t)
to the curvec atc(t) by

P(t) ≡ {q : (q − c(t)) · h(t) = 0}.
If p is close to the arterial wall, we may compute the nearest point on the arterial central

curve top, q = c(t (p)), wheret (p) ∈ [0, 1] is the smallest value oft such that

|p− c(t (p))| 6 r(t (p)) (72)

and

(p− c(t (p))) · h(t) = 0. (73)

Since we represent the arterial central curvec(t) by piecewise cubic functions int and
h(t) is the tangent to this curve, this last equation yields a fifth-degree polynomial equation in
t . It can be solved using a standard optimization method such as the Newton–Raphson method.

A network of arteries is represented by a union of such tubular surfaces.

7.2. Energy minimization

The quadratic minimization process is essentially a Newton method for finding a minimum.
The control variables in the problem whose changes lead to new configurations are the position
and orientation changes at the point of insertion, determined by the user. The Newton method
for incremental energy minimization is very sensitive to moderately large increments in the
control variables. Initial placement methods, that estimate plausible (i.e. low energy) deformed
equilibria consistent with control variable increments, are required to ensure stability and speed.

For initial placement, we use thetangential placement methodwhich minimizes
incremental elastic energy subject to the constraint that points on the catheter which contact
the artery wall move tangentially (to the wall). This assumption is exact for a catheter pushed
against a flat frictionless wall; it is natural to use it in the context of a catheter in a blood vessel
as well.

Consider a nodei on the catheter which is in contact with the wall. Tangential placement
for this node means that

δxi · n = 0 (74)

wheren is the outward normal to the artery wall at the point of contact. We need to rewrite
this constraint in terms of the incremental orientational degrees of freedom. Using (62), it may
be written in the form

n · δx1 +
i−1∑
j=1

(Pj δφj ) · n + (Ri−1δφi ) · n = 0. (75)
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Using the skew-symmetric nature ofP andR, this equation may be rewritten as

i−1∑
j=1

(pj × n) · δφj + (ri−1× n) · δφi = n · δx1 (76)

with (see equation (64)

pj = − 1
2(Lj−1vj−1 +Ljvj )

rj = −Lj
2
vj .

(77)

If there arem nodes on the catheter which contact the wall, then we havem constraints of
the form (76). This system of constraints may be written in matrix form as

B[δφ] = b (78)

where the matrixB and the vectorb are built from the left and right sides respectively of (76).
Given position and orientation changesδx1 and δφ1 at the insertion point, tangential

placement minimizes the incrementalelastic energy subject to the constraint (78). The
constraint may be implemented by adding a Lagrange multiplier to the energy, so that the

Figure 4. A sequence of simulated catheter moves in an artery, shown clockwise from top left.
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Figure 5. A simulated fluoroscopic image of a simulated catheter in an
anatomical context. The catheter is inserted from the thigh and is visible as
a curve.

function to be optimized is (since increments are applied from an equilibrium, elastic and
external loads balance)

δH = 1
2[δφ]T Kel [δφ] + λT (B[δφ] − b) (79)

whereλ is a vector of constraint forces. This function is optimized when the linear system [15](
Kel BT

B 0

)(
[δφ]
λ

)
=
(

0
b

)
(80)

is solved. The tangential placement procedure thus gives us an initial estimate [δφ]0 from the
solution of this linear system.

The Taylor expansion of the total incremental energy (elastic plus external) must be
minimized to find an equilibrium configuration; to quadratic order in the energy, minimization
is achieved when the linear system

(Kel + K̃ex)[δφ] = (Lel +Lex) (81)

is satisfied, as discussed at the end of section 6, whereK̃ex = T TKexT . Since the incremental
energy generally contains terms higher order than quadratic, this system must be iterated to
find a true equilibrium. In practice, for small increments of the control variables, this only
requires a few iterations.

The process may be summarized as follows:

(1) Given user-specified changes of control variables at the insertion point, if there are
nodes contacting the artery wall, use tangential placement to find an initial estimate of
orientational changes [δφ]0. If there are no contacting nodes, displace the catheter rigidly.

(2) Construct correspondingly updated stiffness matrices (elastic and external) and load
vectors and solve the linear system (81). Update variables and iterate (81) until
convergence is achieved, i.e., the total load becomes very small.

A catheter (the same as that used in the loading experiments in section 6) inserted into
an artery by using the above process is shown in figure 4, where the deformation of the shape
to fit inside the artery is clearly visible. Figure 5 shows a simulated fluoroscopic view, with
a catheter inserted by the simulation procedure described here, of the kind that a physician
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usually works with in an actual catheterization procedure. For details about the simulation
system, the reader is referred to [1]. The system uses anatomical data reconstructed from
the Visible HumanTM database. Catheters are usually hollow and are used in conjunction
with guidewires which pass through them. The determination of equilibrium shapes of such a
composite object, particularly in the catheter’s head region, is also required. A discretization
with circular arcs may be used for this purpose and is described in [17]. This method directly
builds the constraints (12) and (13) into the description of the geometry and finds equilibria
by minimizing the total energy. We are developing the incorporation of the guidewire into the
FEM formalism discussed in this paper as well and will discuss this elsewhere.

To conclude, we have described a formalism for the description of thin rod deformations
and applied it to the problem of simulating catheter navigation. The description applies across
the wide range of scales at which chain-like objects are found, from proteins and the cell
cytoskeleton to catheters and bridges made of beams. By the addition of an inertial term
(d’Alembert’s principle) we can extend the formalism detailed here to the dynamics of flexible
rods [18]. A discretized treatment is directly applicable to the control of ‘tentacles’ or flexible
robot arms with joints.
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Appendix. Reduction from three-dimensional elasticity

Here we show that equation (8), and related results marked (a) and (b) at the end of this appendix,
arise from the reduction of three-dimensional continuum mechanics to a thin rod model.
Although these consequences may be part of ‘folk’ knowledge in the elasticity community,
we have not seen these results derived before (see, for example, chapters 8 and 9 in [3], where
Cosserat rods are discussed).

The elastic energy in three dimensions, to quadratic order in the strainsuij , takes the form

Eel =
∫
V

Cijkluijukl dv (82)

where the integral is over the volume of the rod and theC are elasticity coefficients;C is
symmetric under exchange of{ij} and{kl}. We shall consider, for convenience, the case of
isotropicmaterials, in which case theC satisfyCijkl = 0 for i = j andk 6= l. Specifically,
the energy densityJ3 in this case takes the form

J3 = µs Tr(usu
T
s ) +

K

2
(Tr u)2 (83)

whereus is the traceless part of the strain tensor which describes volume-preserving or shear
deformations,

us,ij = uij − 1
3δij Tr u. (84)

The elastic constantsµs andK are the shear modulus and the bulk modulus, respectively.
Consider a normal cross section of the rod which forms one side of an infinitesimal slab

of rod. Choose orthonormal coordinates(x1, x2, x3) such that thex1 axis is tangent to the
centreline and choose the origin so that∫

A

xi dx2 dx3 = 0 i = 2, 3 (85)
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whereA denotes the cross section. We shall assume that the geometry of the rod varies slowly
enough that the centreline forms a continuous piecewise smooth curve.

We shall write down now a general expression for the deformation of material in
the neighbourhood of the sectionA, up to quadratic order in the coordinates. Denoting
displacements in thex1, x2 andx3 directions byu1, u2 andu3 respectively, we write

(
u1

u2

u3

)
=
(
k1 h1 g1 a1 b1 c1 d1 e1 f1

k2 h2 g2 a2 b2 c2 d2 e2 f2

k3 h3 g3 a3 b3 c3 d3 e3 f3

)


x1

x2

x3

x2
1

x1x2

x1x3

x2x3

x2
2
x2

3


. (86)

We shall assume that the strain tensor (with componentsuij = (∂iuj + ∂jui)/2) obtained
from this deformation varies only slowly along the rod; this assumption (a natural one for a
rod whose cross sectional extent is much smaller than its length) implies that the strain tensor,
up to quadratic order in the local coordinates, is reflection invariant underx1 → −x1. This
requirement givesa1 = 0, as well as the three relations

a2 = −b1/2

a3 = −c1/2

b3 = −c2

. (87)

Further, we can make overall rotations of the axes to set the coefficientsh1, g1 andg2 to
zero. Then the independent components of the strain tensor are:

u11

u22

u33

u12

u13

u23

 =


k1

h2

g3

k2/2
k3/2
h3/2

 +


b1 0 c1

0 2e2 d2

0 d3 2f3

0 2e1 (d1 + c2)

0 (d1− c2) 2f1

0 (2e3 + d2) (2f2 + d3)


(
x1

x2

x3

)
. (88)

The stress tensorσ obtained from this strain tensor must satisfy the equilibrium equations

divσ = 0 (89)

which hold in the absence of body forces (which we neglect). In addition, we shall assume that
since the rod is thin, the force densities (derived from surface stresses) on the sides of the rod
are zero almost everywhere on the surface (under normal loading conditions), and that where
they are non-zero, they scale like(d/L), whered is a measure of cross sectional extent andL

is the length of the rod. We shall see presently that this is a consistent assumption.
For isotropic materials, the independent components of the stress tensor may be written

in terms of those of the strain tensor [11] in the form
σ11

σ22

σ33

σ12

σ13

σ23

 =
Y

(1 + ν)(1− 2ν)
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×


(1− ν) ν ν 0 0 0
ν (1− ν) ν 0 0 0
ν ν (1− ν) 0 0 0
0 0 0 (1− 2ν) 0 0
0 0 0 0 (1− 2ν) 0
0 0 0 0 0 (1− 2ν)




u11

u22

u33

u12

u13

u23


(90)

whereY = 9Kµs/(3K+µs) is Young’s modulus andν = 1
2(3K−2µs)/(3K+µs) is Poisson’s

ratio.
With the use of these expressions, the above requirements place further constraints on the

coefficients. They tell us that we must have the relations

e2 = −νb1/2

d2 = −νc1

d3 = −νb1

f3 = −νc1/2.

(91)

They also yield, to this order, the equations

h2 = g3 = −νk1. (92)

All of the above follow from settingσ22 = 0 andσ33 = 0 on the boundary of the
cross section. Where these stresses on the surface are non-zero, the strain tensor must be
expanded to higher order, in general, to satisfy the boundary conditions. It is easy to see
that these corrections to the strain tensor from higher-order terms are significant only near the
boundary. In addition, in these stressed regions, the constant terms in the strain tensor may be
independently non-zero, so that for instance (92) need not hold; equation (91) may be modified
as well. These corrections are generally of orderd/L.

In regions with zero boundary stresses, corrections to equation (92) are of quadratic order
in d/L. This may be seen by an expansion away from a stressed region into an unstressed
region that includes broken reflection symmetry.

We also find the general relations

e1 = f1 = 0

e3 = −d2/2= νc1/2

f2 = −d3/2= νb1/2

. (93)

These follow from the equilibrium equations (89) upon assuming that the elastic moduli
vary only slowly along the rod. At higher order ind/L, these equalities are modified and in
any case tell us thate3 andf2 are not independent quantities. The quantitiese1 andf1 remain
zero at higher order as well; this follows from the equilibrium equations and from the zero
surface force density requirement on thex1 component of the surface force, which reads

σ12m2 + σ13m3 = 0. (94)

Herem is the outward normal at the rod surface or the boundary of the section (this has
zerox1 component due to our choice of coordinates). These relations are also consistent, as
they should be, with the boundary conditionσ23 = 0 on the surface. Equation (94) also yields
the boundary condition

(d1 + c2)x3m2 + (d1− c2)x2m3 = 0 (95)

on the boundary contour. For a circular cross section, this yieldsd1 = 0; there is no warping
of the cross section in this particular case. For an arbitrary cross sectional shape, equation (95)
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cannot be satisfied as it stands and in general must be augmented by additional terms (arising
from extra terms inu1 that are higher order in the transverse coordinates) due to warping of
the cross section. It is to be noted that these warping terms are only present whenc2 6= 0; in
general, to leading order we therefore haved1 ∝ c2.

In order to make the connection with standard treatments of Cosserat theories, we shall
now relabel some of the coefficients and interpret them. So we shall writeα ≡ k1, β1 ≡ h2,
β2 ≡ g3, ω1 ≡ c2, ω2 ≡ c1, ω3 ≡ −b1 andd1 ≡ ω1d̄1; then the constraints we have derived
tell us thatd2 = −νω2, 2e2 = νω3, d3 = νω3, 2f3 = −νω2, 2e3 = νω2 and 2f2 = −νω3.

With these definitions, the independent components of the strain tensor in three dimensions
finally take the form (to leading order ind/L)

u11

u22

u33

u12

u13

u23

 =


k1

h2

g3

k2/2
k3/2
h3/2

 +


0 −ω3 ω2

0 νω3 −νω2

0 νω3 −νω2

0 0 ω1(d̄1 + 1)/2
0 ω1(d̄1− 1)/2 0
0 0 0


(
x1

x2

x3

)
. (96)

It is apparent from here that the variablek1 measures stretch in the longitudinal direction
and thath2 andg3 measure stretch in the transverse directions. It is also clear thatk2, k3

andh3 measure shear in thex1 − x2, x1 − x3 andx2 − x3 planes, respectively. The vector
ω ≡ (ω1, ω2, ω3) measures strain due to twisting and bending deformations along the rod;
it is clear from the form of the strain tensor that it expresses arate of twisting and bending.
The variabled̄1 measures warping of the cross section; it effectively contributes a factor to the
twist modulus. More correctly, this variable receives higher-order corrections which it needs
to satisfy the boundary condition (95).

We mention again that corrections to these equations come from higher-order terms (of
order higher than quadratic in the transverse coordinates) in the expansion of the deformation
(86); these are expected to be small under normal loading conditions. In particular, it is clear
that changes in the cross sectionalgeometryare of quadratic or higher order in the transverse
coordinates.

This form of the strain tensor corresponds exactly to thegeneraltheory of Cosserat rods
described in terms of two transverse directors, for example, in [3]. This model allows for
stretching in the transverse and longitudinal directions, changes in angles between the two
directors and the tangent to the centreline, and rotation along the curve of the plane defined
by the transverse directors. The nine parameters which quantify the strains in equation (96)
correspond to aGL(3) general affine transformation of the three directors in this model.

A specialization of thisGL(3)model is the theory ofspecial Cosseratrods. In addition to
bending, twisting and stretch of the centreline, this model allows for the plane defined by the
two transverse directors to change its angle with respect to the unit tangent to the centreline.
This model is therefore described by the strain variables of rotation rateω, longitudinal stretch
k1, and shear strainsk2 andk3 which quantify shear in two non-transverse planes.

Using the strain tensor (96) in the elastic energy density (83) and using the centreline
definition (85), the following facts emerge upon integration over the cross sectional variables:

(a) In the resulting quadratic one-dimensional energy density, there is no coupling of the
rotation rateω with either stretch or shear.

(b) The terms in the one-dimensional energy density involving stretch and shear have
a coefficient proportional to(µsA), while the terms depending on the rotation rate have a
coefficient proportional to(µsI ); hereA ∼ d2 is the area of cross section,I ∼ d4 is a second
moment of area. The rotation rate has an average value determined roughly by the total angular
change of the unit tangent along the rod (sayφ) divided by its lengthL. Sinceφ is typically
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a number of order one, assuming a roughly equal distribution of energies says that average
stretch and shear rates therefore have magnitudes of orderd/L; thus for instancek1 ∼ (d/L).
As d becomes very small relative toL, stretch contributes very little to change in geometry.

Further, one expects from this analysis that in general various stretch and shear rates are
all of comparable magnitude. Since it is the bending modes of deformation which cost least
energy for smalld/L, our earlier assumption that force densities on the sides of the rod are
generically small is justified.

A further specialization of the special Cosserat theory is one which considers the rotation
rate alone as the strain variables. Given the small value ofd/L, the effect on the cross sectional
geometryremains very small, as we have noted earlier; to a good approximation one can indeed
assume that normal sections are deformed to normal sections. This description in terms of
the centreline and an associated rotation rate alone, which intuition suggests is reasonable, is
therefore easily justified.

While our analysis used isotropic elasticity for convenience, it is easy to see that the
conclusions above remain valid even upon removing this restriction. All changes are only
in the coefficients of the resulting one-dimensional energy density. We used homogeneity as
well in the above. When there are departures from homogeneity, there are in general couplings
between rotation rate and the stretch and shear variables in the one-dimensional energy density.
However, as long as variations in properties are slow, our results continue to hold to a good
approximation.

The foregoing analysis serves to make precise the notion of ‘thinness’. With the model used
in this paper as an initial approximation, an expansion in powers ofd/L could be developed
to provide successively more refined models of ‘thicker’ rods.
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